

## PAR-003-1152002 Seat No. \_\_\_\_\_

## M. Sc. (Electronics) (Sem. II) (W.E.F. 2016) Examination

August / September - 2020

Advance Electromagnetics: Paper - VI (New Course)

Faculty Code: 003

Subject Code: 1152002

Time:  $2\frac{1}{2}$  Hours] [Total Marks: 70]

1 Answer the Following : (Any Seven)

14

- (1) Prove that  $\delta = \frac{1}{\alpha}$
- (2) Prove that **E** and **H** fields are perpendicular to each other.
- (3) Derive  $\nabla^2 E = \mu_0 \in_0 \ddot{E}$ .
- (4) Draw the diagram of fields of EM wave for the cases of parallel and perpendicular polarization.
- (5) Write the expressions for velocity of propagation and attenuation constant.
- (6) Prove that  $\nabla^2 H = \left(-\omega^2 \mu \in +j\omega\mu\sigma\right)H$ .
- (7) Define good conductor and good dielectric.
- (8) Define polarisation of wave.
- (9) Write the expressions for propagation constant and phase shift constant.
- (10) Define and draw uniform plane wave.
- $2 \qquad \text{Answer the Following} \, : \, (\text{Any } \, Two)$

**14** 

(1) Prove the relation between E and H in uniform plane 7 wave :  $\left| \frac{E}{H} \right| = \frac{E}{H} = 120\pi\Omega$ .

- (2) Derive the expression for phaseconstant
  - $\beta = \omega \sqrt{\frac{\mu \in (1 + \frac{\sigma^2}{\omega^2 \in 2})}{1 + \frac{\sigma^2}{\omega^2 \in 2}}} + 1$ . rad/m using wave

propagation constant  $\gamma = \sqrt{-\omega^2 \mu \in +j\omega\mu\sigma} = \alpha + j\beta$ .

- (3) Derive the expression for intrinsic impedance of the conductor  $\eta = \frac{j\omega\mu}{\sigma}$
- **3** Answer the Following:

14

- (1) "A uniform plane wave propagating in x-direction has 7 no x-components of E and H". Prove this statement.
- (2) Derive the expression for  $\alpha = \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}$  and  $\beta = \omega \sqrt{\mu \epsilon} \left(1 + \frac{\sigma^2}{8\omega^2 \epsilon^2}\right)$  of wave propagation

characteristics in good dielectrics.

## OR

**3** Answer the Following:

14

7

- (1) Explain the reflection coefficient, transmission coefficient in context of waves on Dielectric normal incidence.
- (2) Write a detailed note on the oblique incidence of EM 7 wave onperfect conductor in the case of parallel polarisation.
- 4 Answer the following:

**14** 

- (1) Discuss Brewster angle for parallel and perpendicular 7 polarisation.
- (2) Write a detailed note on surface impedance.

7

5 Answer the following: (Any Two)

- 14 7
- (1) You are given the following wave equations and field components.

$$\begin{split} &\frac{\partial^2 E}{\partial x^2} + \gamma_p^2 E = -\omega^2 \mu_0 \in_0 E \text{ and } \frac{\partial^2 H}{\partial x^2} + \gamma_p^2 H = -\omega^2 \mu_0 \in_0 H \\ &H_x = \frac{-\gamma_p}{h_p^2} \frac{\partial H_z}{\partial x}, \ H_y = \frac{-j\omega \varepsilon_0}{h_p^2} \frac{\partial E_z}{\partial x}, \ E_x = \frac{-\gamma_p}{h_p^2} \frac{\partial E_z}{\partial x}, \\ &E_y = \frac{j\omega \varepsilon_0}{h_p^2} \frac{\partial H_z}{\partial x} \text{ where, } h_p^2 = \gamma_p^2 + \omega^2 \mu_0 \varepsilon_0. \end{split}$$

Find the field components for TE waves.

(2) Derive the expression for guide wavelength

7

$$\gamma_p = \frac{\lambda}{\left[1 - \left(\frac{\lambda}{\lambda_c}\right)^2\right]^{1/2}}$$

- (3) Write a note on propagation parameters of TE and TM waves and also define and write the expression for cut-off frequency.
- (4) Obtain the expression for field components for TM wave when the EM wave passes through two parallel, infinite and perfectly conducting metal plates.